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We study the possibility of realizing topological phases in graphene with randomly distributed

adsorbates. When graphene is subjected to periodically distributed adatoms, the enhanced spin-orbit

couplings can result in various topological phases. However, at certain adatom coverages, the intervalley

scattering renders the system a trivial insulator. By employing a finite-size scaling approach and

Landauer-Büttiker formula, we show that the randomization of adatom distribution greatly weakens

the intervalley scattering, but plays a negligible role in spin-orbit couplings. Consequently, such a

randomization turns graphene from a trivial insulator into a topological state.
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Introduction.—Due to its unusual structure, graphene
displays two other internal degrees of freedom besides
the real spin: AB sublattice and valleys K=K0 [1]. When
graphene is deposited on substrates or adsorbed with heavy
atoms, the interaction-induced symmetry breaking can
open bulk gaps to support kinds of topological phases.
For example, a staggered AB sublattice potential breaking
the inversion symmetry leads to a quantum valley-Hall
effect [2–4]; certain nonmagnetic adatoms [5] can enhance
the intrinsic spin-orbit coupling (SOC) of graphene to host
a quantum spin-Hall state [6]; some 3d or 5d transition
metal adatoms produce a quantum anomalous-Hall state
[7–9] due to the interplay between proximity-induced
magnetization and Rashba SOC [10]. It is noteworthy
that the intervalley scattering in these studies is completely
avoided by choosing appropriate adatom coverages with
valleys being separated in the momentum space, e.g., one
adatom in each 4� 4 supercell of graphene.

However, at some specific adatom coverages, i.e., one
adatom in each 3n� 3n (n ¼ 1; 2; 3; :::) supercell of gra-
phene, valleys K and K0 are folded into the � point. The
resulting intervalley scattering becomes significant and
drives graphene into a trivial insulator [10,11]. In realistic
samples, the precise control of periodic adsorption is im-
practical. The randomly distributed adatoms inevitably
cause mixture of different coverages and introduce the
intervalley scattering. These have discouraged experimen-
talists from exploring such novel states. Therefore, a cru-
cial issue arises: taking the site randomization of adatoms
into account, is it possible to observe topological phases
experimentally?

In this Letter, we show that the randomization of adatom
distribution greatly weakens the intervalley scattering, but
does not affect the induced SOCs and magnetization, sug-
gesting prosperity of realizing topological phases in gra-
phene. Using a finite-size scaling method, we show that the
randomization can induce a topological phase transition

from a trivial insulator to a topological insulator. With the
Landauer-Büttiker formula, we confirm our finding by
computing the two-terminal conductance under periodi-
cally or randomly distributed adatoms.
Quantum spin-Hall effect.—We consider a graphene

sheet adsorbed with nonmagnetic atoms (e.g., indium or
thallium), which prefer hollow sites of graphene [5]. For
simplicity, we assume that adatoms only interact with the
surrounding six-nearest carbon atoms. Such an interaction
enhances the intrinsic SOC and generates a site potential
(also known as the crystal field stabilization energy) on
each influenced carbon atom. This potential is key to
induce the intervalley scattering.
The tight-bindingHamiltonian of graphenewith randomly

distributed adatoms reads [5,6,12]:

H ¼ �t
X

hiji;�
cyi�cj� þ i�SO

X

hhijii2R;��

�ijc
y
i�s

z
��cj�

þU
X

i2R;�

cyi�ci�; (1)

where cyi� creates an electron on site iwith spin�, and t is the
hopping energy between nearest neighbors. The last two
terms represent respectively the intrinsic SOC �SO and site
potential U, which apply on the influenced sites denoted by
R. sz is the z-component of spin Pauli matrices. hh:::ii sums
over all next-nearest neighbors. �ij ¼ 1ð�1Þ corresponds

to the hopping clockwise (counterclockwise) between next-
nearest neighbors. According to their formation mecha-
nisms, �SO should be one order smaller than U. In the
following, we adopt the intrinsic SOC in the thallium-atom
adsorption case, i.e., �SO ¼ 0:016t � 0:044 eV [5].
As mentioned in the Introduction, topological phases in

graphene are sensitive to the coverage of adatoms. To make
our investigation complete and convincing, we shall dis-
cuss the effect of randomization on two kinds of adatom
coverage with and without intervalley scattering. We begin
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with the discussion on the 11.1% adatom coverage with
intervalley scattering.

Let us first examine the sensitivity of topologically
trivial or nontrivial phases to the adatom configuration.
Figures 1(a) and 1(b) display two different 6� 6 supercells
of graphene. To keep the coverage, four adatoms are
included in each supercell. In Fig. 1(a), the 3� 3 period-
icity still holds, while in Fig. 1(b) the 3� 3 translational
symmetry is broken due to the shift of one adatom to its
neighboring site. This can be regarded as the simplest step
to randomize a 3� 3 supercell to a 6� 6 one. To under-
stand the role of randomization on the site potential U and
intrinsic SOC �SO, we plot the bulk band structure around
the � point by considering only U or �SO. In the presence
of only U, the intervalley scattering in the 3� 3 supercell
opens a bulk gap as plotted in the solid line in Fig. 1(c).
Due to the spin and valley degeneracy, the bulk bands are
fourfold degenerate. One can see that a slight change of
the adatom configuration lifts the valley degeneracy (see
dashed bands) and shrinks the bulk band gap, implying
the decrease of the intervalley scattering. As a sharp
contrast, the band structures with only intrinsic SOC are
almost identical for both supercells [see Fig. 1(d)]. This
indicates that the effect of intrinsic SOC is insensitive to
the slight change of the adatom configuration.

Although both site potential and intrinsic SOC can open
bulk gaps, the resulting insulators are topologically different.

An efficient way to identify these phases is to calculate the
Z2 topological number. Using the methods discussed in
Refs. [13,14], we find different phases arising from the
competition between U and �SO. As shown in Fig. 1(e), for
a fixed �SO ¼ 0:016t, small U leads to a Z2 ¼ 1 quantum
spin-Hall insulator, while large U gives rise to a Z2 ¼ 0
trivial insulator. A remarkable difference between the two
configurations can be observed in the range of U 2
½0:29t; 0:36t�: a phase transition occurs from a trivial insu-
lator to a Z2 ¼ 1 topological insulator.
Through employing a finite-size scalingmethod, we study

the effect of strong randomization of adsorption sites. The
simulation procedures can be summarized as follows: (1) ex-
panding the supercell from 3� 3 to 3n� 3n (n ¼ 2; 3; 4:::);
(2) randomly selecting n2 hollow sites and then determining
the influenced atomic sitesR; (3) based on the Hamiltonian
in Eq. (1), calculating the bulk band structure and measuring
the bulk gap �; (4) repeating the steps (2) and (3) to obtain
M samples. Thereupon, the probability distribution of bulk
gap Pð�Þ can be obtained according to Pð�Þ�� ¼ m=M,
where m counts the magnitudes located within the range of
½�� ��=2;�þ ��=2�.
Figure 2 exhibits the evolution of the probability distri-

bution of bulk gap Pð�Þ along with the increasing of the
supercell size n. The left column corresponds to the case
with only the site potentialU ¼ 0:36t. For n ¼ 1, although
there are 9 different adatom configurations, their band
structures are exactly the same. Therefore, the resulting
bulk gap is a constant � ¼ 0:029t [see Fig. 2(a)]. When

n > 1, there are Cn2

9n2
adatom configurations in a 3n� 3n

supercell, most of which result in distinct band structures.
In Figs. 2(d) and 2(e), we observe that the band gap �
fluctuates in a wide region, and the gap region shrinks
toward zero for larger n. To better reflect this character-

istic, we introduce the median of each ensemble ��, which
is highlighted in a solid red line. After a numerical fitting, a

scaling law is found to be �� � 0:22U2=ðntÞ. Moreover,
such power law decay as a function of n can also be
analytically obtained from the Fourier component of
randomly distributed site potentials corresponding to the
intervalley scattering. In the inset of Fig. 2(e), we show that
Pð�Þ of n ¼ 9 can be fitted by a 2D Maxwell distribution

function fð�Þ ¼ �=�2 expð��2=2�2Þ, where � ¼
�=

ffiffiffiffiffiffiffiffiffiffi
2 ln2

p
. According to fð�Þ, the probability of opening

a band gap in the range of ½3 ��;1Þ is about 0.2%. Together
with the fact that a realistic sample resembles a n ! 1
supercell, one can conclude that the intervalley scattering
should be vanishing with randomly distributed adsorbates.
Next, we turn to the case with only the intrinsic SOC

�SO ¼ 0:016t. As shown in the middle column, we find
that the bulk gap � � 1:15�so is almost independent of the
randomization for any supercell size n. This means that the
intrinsic SOC remains insensitive to the strong random-
ization of adatom distribution, and the resulting quantum
spin-Hall phase is stable against the random adsorption.
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FIG. 1 (color online). (a)–(b) Two different configurations of
4 adatoms in a 6� 6 supercell. (c)–(d) Bulk band structure only
with site potential U ¼ 0:36t (c) or intrinsic SOC �SO ¼ 0:016t
(d). (e) Z2 topological number versus U at fixed �SO ¼ 0:016t.
In (c)-(e), solid and dashed lines correspond respectively to the
supercells in (a) and (b). (f) Schematic of the finite-size scaling
at a fixed 11.1% adatom coverage. Empty, small solid and large
solid circles represent the pristine graphene, carbons influenced
by adatoms, and adatoms, respectively.
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Comparing the results from both limits of only site poten-
tial or intrinsic SOC, it is natural to expect that the realistic
graphene sample should favor the quantum spin-Hall state
when both U and �SO are present.

Such a speculation is verified by the gap statistics drawn in
the right column. In the 3� 3 supercell, because of the
competition between U and �SO, the gap opening is smaller
than those shown in Figs. 2(a) and 2(f). When the supercell

size increases, themedian �� first decreases atn ¼ 2, but then
increases for larger n [see Figs. 2(m)–2(o)]. The topological
number Z2 ¼ 0 is obtained for n ¼ 1, whereas Z2 ¼ 1 is
found for n ¼ 3, 6, and 9. It is thus evident that the increasing
of randomization turns graphene from a trivial insulator to

a quantum spin-Hall insulator. From the tendency of ��, one
can notice that it gradually approaches the band gap labeled
in Fig. 2(f).

Thus far, we analyze the influence of randomization by
investigating the bulk band structures of various supercells.
Below, we design a two-terminal device illustrated in
Figs. 3(a) and 3(b) to study the transport properties using
the Landauer-Büttiker formula [15]. The adatoms are only
considered in the central scattering regime, and two leads
are modeled by pristine graphene ribbons. The presence of
helical edge modes in the quantum spin-Hall insulator
gives rise to a quantized longitudinal conductance.

Figure 3(c) plots the average conductance G and its
fluctuation �G as a function of the Fermi energy "F. The
parameters areU ¼ 0:36t and�SO ¼ 0:016t. In the presence
of periodically distributed adatoms [see Fig. 3(a)], G ¼ 0
and �G ¼ 0 in units of e2=h within the range of "F 2
½0:117t; 0:124t�, signaling a trivial insulator. However,

when the adatoms become randomly distributed in
Fig. 3(b), a quantized plateau G ¼ 2e2=h with vanishing
fluctuation emerges in the regime of "F 2 ½0:116t; 0:132t�.
The distribution of local currents illustrated in the inset of (c)
further indicates a quantum spin-Hall insulator. Such a phase
transition resembles the disorder-induced topological
Anderson insulator [16,17], except that it is the adatom
configuration that triggers the phase transition rather than
the disorder strength.
Previous analysis has focused on the 11.1% adatom

coverage with strong intervalley scattering. What happens
for other coverages without intervalley scattering? Let us
consider a 6.25% adatom coverage (one adatom in a 4� 4
supercell) for example. Using the same finite-size scaling
method, we show that the bulk gap is only dependent on the
intrinsic SOC, but independent of the site energy or super-
cell size. An immediate evidence is the robust quantized
plateau shown in Fig. 3(d) for either periodically or ran-
domly distributed adatoms. To conclude, in a thallium-
atom adsorbed graphene, the quantum spin-Hall state is a
system-preferred ground state for any adatom coverage,
and the bulk gap �46 meV can be detected under current
experimental techniques.
In realistic samples, some adatoms are inevitably dis-

tributed on top sites. A staggered sublattice potential can
open a trivial gap due to the inversion symmetry breaking.
Since adatoms are equally adsorbed on top of A=B sub-
lattices, we show that the randomization of distribution
eliminates the effective staggered potential and decrease
the trivial gap [18]. Therefore, the top adsorption does not
affect the realization of topological states in graphene.
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FIG. 2 (color online). Probability distribution of bulk gap Pð�Þ for 3n� 3n supercells of graphene subjected to n2 randomly
distributed adatoms. 2000 samples are collected for each panel. (a)–(e) Only the site potential U ¼ 0:36t is considered. (f)–(j) Only
the intrinsic SOC �SO ¼ 0:016t is considered. (k)–(o) Both U ¼ 0:36t and �SO ¼ 0:016t are included. The solid red line labels the
median of each ensemble ��. Inset: Numerical fitting of the probability distribution for n ¼ 9.
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In semiconductors with weak disorder, the spin-Hall
conductance vanishes for uniform SOC [19], whereas a
finite but non-universal spin-Hall conductance emerges
for spatially random SOC [20]. In contrast, when the
system exhibiting a quantum spin-Hall effect is subjected
to uniform or random SOC, as long as the Fermi level lies
inside the bulk gap, the spin-Hall conductance is univer-
sally quantized and topologically protected against weak
disorders.

Quantum anomalous-Hall effect.—When the 3d=5d
transition metal atoms are adsorbed on graphene, the in-
teraction enhances Rashba SOC �R [21], and induces site
potentialU and magnetizationM. In Refs. [8–10], ab initio
calculations show that the quantum anomalous-Hall phase
can be produced in the 6.25% adatom coverage, but the
trivial insulator is usually formed in the 11.1% adatom
coverage due to the strong intervalley scattering. In
Fig. 3(e), we calculate the average conductance versus the
Fermi energy "F at 11.1% adatom coverage. The parameters
areU ¼ 0:38t,�R ¼ 0:04t, andM ¼ 0:04t.We observe that
G ¼ 0e2=h in the range of "F 2 ½0:125t; 0:127t� for the
periodically distributed adatoms. However, for the randomly
distributed adatoms, a quantized plateauG ¼ 2e2=h appears
in the range of "F 2 ½0:127t; 0:137t�. The inset plots the
schematic of the corresponding local current, indicating a
quantum anomalous-Hall insulator. This result further con-
firms our finding that while the intervalley scattering is
fragile, the SOC and exchange field are robust against the
randomization of adatom distribution.

Summary.—For periodically distributed adatoms with
certain coverage, the strong intervalley scattering plays a
dominant role and suppress the topological gap, thus turning

graphene into a trivial insulator. Using both finite-size
scaling method and transport calculation, we show that
when the adatom distribution becomes random, the interval-
ley scattering is weakened, but other quantities (e.g., SOCs
and magnetization) are not affected. This finding points out
that the topological states are graphene-favored ground states
in the presence of randomly distributed adatoms.
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